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FOREWORD

This report gives the results of an investigation of aliasing in the data
from conductivity/temperature/depth (CTD) instruments used by the Naval
Oceanographic Office (NAVOCEANO). The U.S. Navy Fleet requirements for
environmental data presently are supported through measurements made with the
CTD. Investigation was undertaken to determine what errors could be expected in
survey data products due to aliasing in the CTD data.

This effort was performed under a contract awarded to Triton Systems, Inc.,
of Pass Christian, MS. Dr. Ernest L. Burdette was the principal investigator
for Triton Systems. The empirical data used in the analysis were obtained
using the unique facilities and specialized techniquas developed in the
Engineering Department of NAVOCEANO.
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M. Sears
Captain, USN
Commanding Officer

Triton Systems, Incorporated
Contract No. N62306-82-M-2222
Pass Christian, MS. 39571
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1.0 INTRODUCTION

1.1 BACKGROUND

U.S. Navy requirements for environmental data presently are supported
through measurements made with a conductivity/temperature/depth (CTD)
instrument. Data products are developed from the CTD data. A typical
example is salinity, a function of all three measured parameters.

The instrument used by the Naval Oceanographic Office (NAVOCEANQ) is the
Mark IIIb CTD manufactured by Neil Brown Instrument Systems, Inc. (NBIS).
Data are acquired by operating the CTD in an over-the-side downcast mode.
The standard profiling deployment rate for the instrument is 1 m/s. Time
series data are digitized at a rate of approximately 32 ms per sample of
pressure, temperature and conductivity. This corresponds to a spatial
sampling rate of approximately 31.2 samples per meter (0.032 m between
samples) in the vertical direction. Standard data products are obtained by
applying a low-pass filter to the vertical data sequence, followed by
sub-sampling at 1 sample per meter. This approach is followed for directly
measured parameters, such as temperature and conductivity, as well as com-
puted parameters such as salinity.

The Nyquist criterion for the spatial data sequence states that a vertical
sampling frequency of 31.2 m-1 is adequate to resolve spatial frequencies
as high as 15.6 m-l, This is equivalent to resolving wavelengths greater
than 0.064 m. The vertical dimension of the NBIS conductivity cell is
0.03 m which should approximate the spatial resolution of the sensor.
Thus, it is clear that the spatial resolution of the sensor is appraxi-
mately two times that specified by the Nyquist criterion for the given
sampling rate.




As this simplistic analysis demonstrates, the present 1-m-1 data products
are an order of magnitude poorer in resolution than is dictated by the fun-
damental limitations of the sampling rate and the NBIS CTD conductivity
cell resolution. However, due to other characteristics of this instrument,
at least two barriers to higher resolution data products exist.

One well-known problem is created by mismatching of the time response
characteristics for the conductivity and temperature transducers. Changes
in temperature and conductivity are measured with different responses, the
temperature circuitry responding more slowly than conductivity. If these
changes are of the same order of magnitude in duration as the response
times of the sensors, the computed salinity will temporarily overshoot the
correct value, producing a transient but relatively large error in sa-
linity, termed a salinity spike. Several methods exist for correcting
salinity spikes, including:

1) Electronic correction by attempting to match physically the time
responses of the temperature and conductivity transducers;

2) Tlow-pass filtering of the temperature and conductivity data to
remove the high frequency spikes in computed salinity as is done
in the operational data; and

3) numerically filtering the individual temperature and conduc-
tivity data sets to correct for the time response of the
respective transducer.

The third method theoretically has the potential for producing the most
accurate results and for retaining a relatively larger amount of high fre-
quency information as required for improvement of resolution. It has the
disadvantage of requiring accurate knowledge of the transducer transfer
function, including both amplitude and phase.




A second potential problem is presented by sampling of CTD transducers at
a frequency of approximately 31.2 Hz without prior filtering to eliminate
high frequency information. Aliasing occurs when frequencies greater than
one-half the sampling frequency are present in the digitized analog signal.
Thus, if either transducer is capable of responding to frequencies higher
than approximately 15.6 Hz, the potential exists for data at lower
frequencies to be contaminated by the aliased high-frequency data. The
nature and extent of the potential aliasing problem can be addressed

only if the transfer functions of the transducers are known.

The transfer function of any device may be determined by obse-ving the
response of the device to known inputs, provided that the input contains
information covering the entire range of frequencies of interest. One
common method is to apply a step function as input, since a time domain
step is composed of an infinity of frequencies. This method is
described in some detail in Section 2.4.

The NAVOCEANO Maintenance Engineering Division has developed a laboratory
test to determine time responses of the individual NBIS CTD transducers.
The test, described in Section 2.1, subjects the transducers to step
changes in temperature and/or conductivity by dropping the sensor through
a stratified layer, while acquiring digitized data from the CTD via
normal means. Data digitized at the normal 31.2 Hz sampling frequency
are Nyquist limited to approximately 15.6 Hz.

NAVOCEANO has modified selected units to acquire data from a single
channel, either temperature or conductivity, at approximately 93 Hz.
Frequency-domain analysis of step-response data acquired at this higher
rate provides a determination of transducer response up to the Nyquist
1imit of 46.5 Hz. This should be adequate to evaluate performance over
the frequency range of the normal CTD data, O to 15.6 Hz.




1.2

A consequence of the modification to enable high-speed sampling of a
single channel is that data are sampled at unerual time intervals, while
conventional spectral analysis techniques require that data be sampled at
equally spaced times. Equally spaced time series could be acquired for
the purposes of this investigation by developing specialized instrumenta-
tion at a significant cost. However, it was decided that the objectives
of this investigation could be satisfied by analysis of readily available
unequally spaced step response data.

O0BJECTIVE

The CTD Data Aliasing Investigation was undertaken in order to determine
if aliasing from the NBIS Mark IIIb CTD may, in fact, represent a problem
to present or future operational data requirements. Existing laboratory
testing techniques and data acquisition equipment employed made the
investigation possible at minimal cost.

The specific objectives of the investigation may be summarized as follows:

1) Adapt or develop means of determining the transfer function of a
sensor from unequally spaced time series data,

2) Using data acquired by NAVOCEANO in laboratory tests, determine
the transfer function of the NBIS Mark IIIb temperature and
conductivity sensors,

3) Based upon these experimentally determined transfer functions,
determine the nature and extent of aliasing in CTD data acquired
at 15.6 Hz,

4) Quantify the effect of aliasing on the accuracy of measured data,
and ‘

5) Attempt to extend the accuracy conclusions to a typical data
prdduct, such as salinity.




2.0 APPROACH

The initial activity of the investigation was a survey of available
literature to identify techniques for analysis of unequally spaced time
series data, with emphasis placed on techniques for estimation of the
spectrum. As a result of the literature survey, a spectral estimation
technique was identified, and this technique was adapted for use in the
study.

Individual conductivity and temperature time series data sampled at a
nominal rate of 93 Hz were obtained from laboratory response tests per-
formed at the NAVOCEANO environmental test facilities. These step
response time series were processed into individual spectra which were
then averaged to obtain mean conductivity and temperature spectra.

The amplitude portion of the sensor transfer function was then obtained
from the respective mean spectrum.

By assuming a spectral form for the data input sampled by the sensor, it
was possible to predict the frequency domain response of the sensor to
that spectral form over the bandwidth O to 46.5 Hz. From this response,
the spectral effect of aliasing within the more limited operational data
bandwidth, 0 to 15.6 Hz, could be quantified. The aliasing effect on
both sensors was examined for two spectral form models. The effect of
error due to aliasing was also extended to the estimation of variance

in the conductivity and temperature data.

The error in computed salinity was approximated by a linear first-order
form involving the errors in temperature and conductivity. Based on
results obtained for the individual sensed parameters, a numerical ap-
proximation for the error in salinity was used to quantify the effect of
aliasing upon the accuracy of the salinity data product when spatial
resolution is extended beyond the present 1-m level.

A detailed explanation of the approach taken for each stage of the
investigation is provided in the remaining portions of this section.




2.1

SPECTRAL ANALYSIS OF UNEQUALLY-SPACED TIME SERIES

A literature survey, undertaken to identify the present state of knowledge
concerning techniques of spectral estimation from unequally spaced time
series, produced several valuable references. Three different spectral
estimation approaches were identified:

1) Prediction and/or interpolation to synthesize missing data
samples, making an unequally spaced sequence into a uniformly
sampled one which may then be processed by conventional methods,

2) Analysis of unequally spaced sequences when sampling instants
are known, and

3) Spectral analysis when sampling instants are unknown, but
statistics of sampling times are known.

A brief description of the significant references for each approach is
provided below.

Results of Literature Survey

1 have applied a linear prediction algorithm to fill gaps

Bowling and Lai
of missing data in an unequally spaced sequence. The technique produces
spectral estimates which are consistent with the data observed. The
authors provide listings of programs which perform extrapolation and

interpolation, as required.

Ackerman2 has investigated non-uniform sampling as a means for reducing
odd harmonic terms in the correlation function of clipped signals. These
arise due to synchronism between the periodicity of uniform samples and
the periodicity of odd signal harmonics produced by clipping. Sampling
times must be known in order to compute the correlation function from
non-uniform samples.




Jones3 reported a spectral estimation technique using unequally spaced

observations taken at known times. It is assumed that the time intervals
are not multiples of some real number, since this case may be treated as
missing data points in a uniformly sampled time series. If x, represents
the complex value sampled at time tv while x: is the complex conjugate
value, the spectral estimate is

Zﬂi(tv - tu)f

= *
s (f) §=1 §=1 W, X, Xt e

where wW are real weights satisfying

W =W
Vi uv

Weight functions are developed for three special cases:

Poisson sampling, random sampling, and ordered time differences.

A Fourier-series approach has been adapted by Singleton and Larson4 to
obtain a spectral estimate from an unequally spaced time series with
known sampling times. The case of random timing is considered.
Masry5 has developed a method for estimating the spectral density function
when the times of individual samples are not known. Consideration is re-
stricted to a stationary Poisson point process wherein samples are acquired
at times

t0 =0, ... ,t_=1t + T, ... ,n=1,2,...
with the Tn independently distributed random variables possessing an
exponential distribution

F(x) =1 - e BX

where B is known. The spectral estimate is obtained by weighted series
expansion of the discrete covariance function associated with the

sampled data sequence. The expansion is constructed from a basis set

of modified cosine functions. A class of exponential-type weight functions
is shown to be acceptable from the point of view of series convergence.




A procedure for estimating sinusoids in a background of noise with known
spectral content but unknown total power has been reported by McClellan§,
This maximum entropy method is extended also to multi-dimensional signals.

Shaw’ considers the effect of processing data acquired in a non-uniform
fashion as though they were sampled uniformly. He shows that such treat-
ment introduces a non-negative error component into the power spectrum.
The spectral error is expressed as a function of the true power spectral
density (PSD) of the process and the variance of the timing errors. The
result is a powerful one since it enables a bound to be placed upon the
error of spectra obtained by processing non-uniformly sampled data via
standard FFT-based time-series analysis methods.

Since Shaw's approach minimized the amount of additional software required
for analysis, this method was adopted for computation of error bounds on
all power spectra utilized in the CTD Data Aliasing Investigation. The
method is summarized below for the sake of completeness.

Conventional Spectral Analysis Using Non-Uniform Samples

For the purposes of conventional time-series analysis, a stationary,
random process, x{(t), is sampled at points spaced uniformly along the time
line to produce a discrete sequence of samples, x(i o t) xj;.* If, due
to error in the sampling procedure, samples actually are acquired at other
times, producing a sequence x(i A t + ej) which is treated subsequently as
uniformly sampled, the error is introduced into the spectral estimate for
the process. The derivation of an expression for the spectral error is
presented in some detail by Shaw’/. A summary of the major steps follows.

*Jenkins and Watts® provide the following description: “Qualitatively, a
stationary series is one which is in statistical equilibrium, in the sense
that it contains no trends, whereas a non-stationary series is such that
its properties change with time."




It is assumed that the individual position or timing errors, ej, also
referred to as “jitter", are small compared to at. Under this condition
we may obtain an expression for the non-uniformly sampled sequence as a
perturbation of the process x(t):
ax

h(t) = x(t) + e(t) - e (1)
Equation (1) assumes that x(t) is differentiable, a condition which should
readily be satisfied for a real-world physical process such as temperature
or conductivity.

The autocorrelation functions of the process h(t) is

2
Ren(t) = Ryx(r) - Reelr) - 25 Ryx(), (2)
2T
where Ryx and Ree are autocorrelation functions of the processes, x(t) and
e(t), respectively. The power spectrum of h(t) is obtained by Fourier
transformation of Eq. (2),

Sh(f) = Sy(f) + Se(f) * {(2 7 f)2sy(f)}, (3)

where Sy and Sp are the PSDs for x(t) and e(t), respectively, and * means
convolution.

The second term in the RHS of Eq. (3), a frequency domain convolution,
represents the error component in the computed PSD when non-uniformly
sampled data are treated as uniform samples. An expression for the error
term is derived for the case of stationary jitter.




Recall that the process x{t) is sampled at times

t,=isat+e,, (4)

i
where e, represents the jitter in the ith sample. The e‘i may be thought
of as discrete samples of e(t), a stationary, zero-mean process. Further,

assume that the variance of e(t) is well approximated by

2 (5)

g
s) = e.

Then, the autocorrelation function of the continuous error function,
e(t), is

- No
= 6lt T
Ro(t) = o5 (1-8xl a.-dhy,y, (6)

N = number of samples in the seauence and
T=NaAT-= length of sample sequence.

The PSD for the error function is then

. 2 - 1
Se(f) = No, ngo 7 s(f - naf) (7)

Nn=-

The error term in £q. (3) becomes aS(f) = S,(f) * {(an)zsx(f)}

2 1 2
= No —> (f - naf)® S_(f - naf) (8)
ngo n X

However, since a power spectral density function computed by means of
an FFT is discrete with frequencies k & f, Eq. (3) will only be evaluated
for f = k o f. Hence, Eq. (8) will, likewise, only be evaluated

10




for the same discrete frequencies. Substitution for f in eq. (8)
together with the change of variables j = k-n yields an error term

o 2 . 2
AS(kaf) = -& (-AH;—) S_(jaf) (9)
Nat2 j;k J- X
where
_1 _ 1
f=7 NaT

Note that the error term is a weighted summation over all frequencies
of the true power spectral density of the process x(t).

Equation (9) demonstrates that the exact PSD obtained by processing non-
uniformly sampled data as uniform may be predicted if the true PSD of

the process and the variance of the jitter are known. This investigation,
however, posed an inverse problem: Given a spectrum obtained by conventional
processing of unequally spaced data, Sh(kAf), what is the true spectrum

of the process? The true PSD may not be calculated directly but may be
bounded in the following fashion.

From Eq. (3), we know that
Sh(kAf) 3_Sx(kAf) (10)

Assume that,

S, (kaf) = S, (kaf) (1)
Then, substituting into Eq. (9), we have
0.2 .2
AS' (kaf) = —= ) (—31——) S, (jaf) (12)
Nat?  jFk -k h

11




Now from (10)

aS' (kaf) > aS(kaf) (13)
Then

5, (kaf) < S (kaf) + aS* (kaf) (14)
or

5 (kaf) > S, (kaf) - as' (kaf) (15)
We define

s, (kaf) = S, (kaf) - aS'(kaf) (16)

Then, from Eq. (15), Eq. (16) and Eq. (10), we have

Sh(kAf) 3_Sx(kAf) 3_Sx'(kAf) (17)

Equation (17) allows upper and lower bounds to be established for the
spectrum of the true process, x(t). Required for calculation of upper
and lower bounds are: (1) a spectral estimate obtained by processing
the time series in conventional fashion as though it were equally
spaced, and (2) the variance of the timing errors.

12




2.2

DATA ACQUISITION

The laboratory procedure which produced the data sets analyzed for this
report was developed by NAVOCEANO for routine measurement of CTD sensor
response functions. A summary description of the test procedure is pro-
vided here for the sake of completeness; (Mayoral, 1982) provides a more
detailed description.

Essential to the procedure is a stable and well-defined artificial
thermocline which is created in a precision environmental test facility
operated by NAVOCEANO. The thermocline consists of two homogeneous,
horizontal water layers of different temperatures, separated by a gradient
layer less than 1 cm in thickness. The stability of the thermocline and
the dimension of the gradient layer have been investigated by Paige.10

The upper layer typically is maintained at a temperature approximately
0.5°C higher than the lower layer. The two layers are of approximately
equal salinity so that the conductivity difference between the two layers
is approximately 0.7 mS/cm.

The arrangement of the laboratory apparatus is such that the sensors drop
through the thermocline at a rate of approximately 0.75 m/s, near the
operational deployment rate of 1.0 m/s. In the process, a pseudo-step
change in temperature and conductivity is sensed by the CTD sensors.
Digitized time series of each transducer output are produced by the
instrument and these are recorded under computer control for subsequent
analysis to obtain the transducer response function.

Standard Data Sampling

In normal operation, the Mark IIIb CTD produces one scan of each of the
three measured parameters -- pressure, temperature, and conductivity --

on a nominal 32-ms timing cycle. The equivalent sampling frequency is
31.25 Hz. Each analog sensor signal is digitized to 16 bit accuracy using
a successive approximation scheme. Sampling resolution for each of the
parameters is, respectively: pressure, 0.1 dbar, temperature, 0.0005°C,
and conductivity, 0.001 mS/cm.

13




The analog to digital (A/D) conversion scheme is implemented in an adap-
tive fashion so that conversion requires the minimum time consistent with
error free operation. The digitizing time for each bit may be as short as
0.3 ms or as long as 1.6 ms. Start of digitization of the pressure signal
is synchronized to the 32-ms timing signal. However, subsequent sensors
in the scan, temperature and conductivity, are digitized at varying times
after the start of the scan, depending upon the time required to digitize
the preceding parameters.

Figure 1 is a time series plot of temperature obtained from a response
test of an instrument operating in the normal mode, i.e., sequential
sampling of pressure, temperature, and conductivity. Figure 2 is a time
series plot of conductivity obtained during the same test. The difference
in response times of the two sensors is apparent in a comparison of the
two curves. A time series of salinity was constructed by applying the
standard salinity a]gorithm11 to corresponding pairs of temperature and
conductivity data from this response test. The salinity time series is
shown in figure 3. The transient decrease in salinity, as the sensors
cross the thermocline, is typical of the "salinity spike" which appears as
an artifact in uncorrected salinity time series data obtained with the
Mark IIIb CTO.

High-Speed Sampling

In order to address the subject of aliasing in data sampled at 31.25 Hz,
it is necessary to evaluate data which are digitized at a much higher
rate. To this end, NAVOCEANO has modified a Mark IIIb CTD to acquire data
from a single sensor at three times the normal sampling rate. This modi-
fication replaces the sensor inputs to each of the other two analog
channels by the single sensor to be sampled. For example, if the conduc-
tivity parameterwere to be sampled at a high rate, analog-input select
lines for digitizing pressure and temperature measurements each would be
changed to select conductivity. Conductivity then is sampled successively
three times in a singie instrument scan. Since only the start of each
scan is synchronized by the CTD sampling clock, the second and third
samples are converted at times which vary slightly from scan to scan, but
all are contained within a 32-ms scan interval.

14
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The average sampling fregquency, however, is three times the normal rate.
For the particular CTD used in these tests, the scan period of the
data-sampling clock was measured at 31.9986 ms. The equivalent sampling
frequency is 31.25 Hz for standard sampling, while the average frequency
for high-speed sampling is 93.75 Hz.

Data Description

Two sets of high-speed data were acquired for use in this investigation.
The initial set consisted of five response tests digitizing conductivity
only and five tests digitizing temperature only. Preliminary analysis
of the first data set revealed essentially no variability between the
five temperature response tests. Such was not the case for the
conductivity data and so a second set of data was acquired. Twelve
additional respbnse tests were made digitizing conductivity only. Both
the initial and second data sets were acquired using the same CTD and
sensors.

Figure 4 is a time series of temperature acquired at 93.75 Hz, while
figure 5 is a time series of conductivity. For the purpose of plotting,
it was assumed that the data samples were acquired within a scan at
intervals of 10, 10, and 12 ms, respectively, rather than at equal
intervals. Some irregularity is evident in the step region of the
curves, particularly for temperature (fig. 4), demonstrating the
irregular sample timing characteristic of the high data rate. Plots

of all high-data-rate response-test time series used in this study

are presented in Appendix A.
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2.3

ANALYSIS OF TIMING ERRORS

As indicated in Section 2.1, bounds may be established for the spectrum

of the CTD step response computed from high-speed data if the variance

of the timing errors is known. The time of acquisition of both the second
and third samples in a high-speed data scan is dependent in each case

upon the time required to convert the previous samp]e.12 Therefore, the
timing errors and their statistics are data-dependent quantities most
accurately measured under conditions which produce the actual response-
test time-series themselves. A technique devised for measuring the
timing-error variance, based on this concept, is described below.

Evaluation of the first set of response-test data showed that sensor
response to the pseudo-step function input of the tests approximated

the classical exponential decay curve, as can be seen in figure 4 and
figure 5. An exponential response to a unit amplitude step is shown for
comparison in figure 6, where the mathematical form of the curve is

1, t < tO
x(t) = (18)
eme(t-tg) » t2t

where o is the time constant for the exponential decay, and to is the
time corresponding to the start of the step input.

Since a plot of the logarithm of x(t) vs. t is a straight line, comparison
of measured data values to an exponential decay is simplified by plotting
the measured parameter vs. time in logarithmic form. Figure 7 is a plot
of a hypothetical time series such as might be encountered in either the
conductivity-or temperature-response-test data when plotted as though
acquired at regular intervals. If the data values are truly those of
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Figure 7. Logarithmic Plot of a Hypothetical Time Series. Solid line
is the least squares fit to the points shown. Timing error of an individ-

ual point, ej, is the horizontal distance from the point to the line
(1ength of broken 1ine). 23




an exponential response process, then it may be assumed that any deviation
of a measured value from the straight line is due to an error in timing
and not in the measurement of x(t) itself. As will be seen, the actual
sensor responses are not simple exponentials. However, the exponential
model provides worst case values for the timing errors, since it also
includes the residuals to the exponential fit.

The timing error for the ith point, ej, is given by the difference between
the assumed time for equal spaced sampling,

ty =14 t, (19)

and the sampling time which corresponds to the ordinate of the ith data

value

ti =tg-—— Inx; (20)
or

ej = ti - ti . (21)

The variance of the timing error is then given by

ne-122

02-_-—']&—'

e (ej - )2 (22)

i=1

where e is the mean of the timing errors. However, determination of the
ej is possible only if the constants a and tp are known for the particular
response test.

The response constants were determined for each individual test sequence

in a three-step process. First, data were normalized to a unit amplitude
step based upon the difference between stabilized "before" and "after"
values ascertained from the two equilibrium portions of the response curve.
The normalized data were then plotted in logarithmic form, assuming an
equal sampling interval. This enabled selection of a subset of the data
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sequence which most closely approximated an exponential response.
Finally, the subset of the data sequence was fit to an exponential by
actually fitting the logarithm of the parameter to a linear form

t= to + By, (23)
where

g = -1/a
and

y = 1n x

using traditional least-squares methods and assuming all error to be
associated with the parameter t.

Temperature response was found to be closely approximated by the exponen-
tial decay, so that the data subset chosen for analysis typically included
fourteen to eighteen points beginning immediately after the step (at time =
to in figure 6). Conductivity was seen to be more complex in its response
to the step change, exhibiting two distinctly different behaviors within
the same data set. A rapid exponential decay characterized the early
stages of the response curve, so that the first seven to nine points following
the break were well represented by the exponential. This was followed by
a clear change in the logarithmic curve to a less steeply sloped line
which was somewhat less linear and less consistent in slope from test to
test. The physical significance of this change is not immediately obvious.
It is apparently a consequence of a complex fluid flow pattern caused by
the shape of the conductivity ce11.13 From the point of view of potential
aliasing, the more rapid response is of greater concern, since rapid
response in the time domain suggests greater response to high frequency
inputs and therefore greater susceptibility to aliasing. Furthermore, any
subset will be valid if the process causing the jitter is truly stationary.
This being the case, attention was focused upon the steeper portion of the
curve, and the constants o and to for the conductivity response were
determined by fitting to this subset. This region typically comprised

the first seven to nine data points following the initial break at time

to.
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2.4

TRANSFER FUNCTION DETERMINATION

A continuous, real function, x(t), such as the physical input to a sensor

or its analog voltage output, possesses a complex Fourier transform, X(f),

given by
X(F) = [ x(t)e i2mftg | (24)
The function x(t) may be recovered from X(f) by the inverse transform
x(t) = [ x(fe'?"Ttyr (25)

The frequency-domain transfer function of a sensor or other measurement
process relates the input and output of such a device. If xl(t) and xz(t)
are, respectively, the input and output to the measurement process, the
Fourier transforms are related by

Xp(F) = T(F)X(F), (26)

where T(f) is the transfer function for the process, in general a complex
quantity. The value of knowing the transfer function for a sensor, and
particularly the importance to this project of knowing the CTD sensor
transfer functions, has been discussed previously in Section 1.1. A means
for obtaining these transfer functions is described below.

Determination of the Transfer Function From a Step-Function Input

From Eq. (26) we have

T(f) = (27)
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If the input function applied to a sensor is a unit step function

1, t<0
xl(t) ={1 , t=0 (28)
0, t>0,

or, following the notation of Bracewe1114,

x,(t) = 1 - H(t) (29)

where H(t) is the Heaviside step function, a measured response

xy(t) = 7 x,(F)e'2 T ts

[7, T(E (el 2 s (30)
will be produced.
If, on the other hand, the measured response, x2(t), to an input of the
form of Eq. (29) is transformed to obtain Xz(f), then the transfer function
may be readily determined from Eq. (27) where

X(F) = 7 (1 - H(e))e 2 e (31)

Expanding, we have,

G I ST MU OO LR ALACTI (32)
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The integrals may be evaluated separately. After Braceweﬂ14
and
f2, (e H = ns(f) - i(prp) - (34)
Combining, we obtain
X (F) = 6(f) - (w6(f) - ilzap) )
= u(s(f) + QP ) . (35)
By substituting Eq. (35) into Eq. (27), we obtain
1
T = B0 U7 1)
nf
(36)

-Zwifxz(f)

In summary, if the response of a sensor to a unit step-function input is
measured and its Fourier transform, Xz(f), computed, then the sensor
transfer function, T(f), may be readily computed using Eq. (36).
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Computation of the Step-Response Spectrum

The power spectrum of a continuous function is related to its Fourier
transform by

s, (F) = X*(f) X(f), (37)

where X* is the complex conjugate of X(f), the Fourier transform

of x(t), as defined by Eq. (24). In this definition, x(t) is defined for
all t and, likewise, X(f) is defined for all f in (-», =). sx(f) is
often referred to as the two-sided spectrum, since it is defined for both
positive and negative f and since

sx(-f) = sx(f). (38)

We are only concerned with the spectrum for non-negative f, and therefore
make use of the single-sided spectrum

Sx(f) = st(f), (39)
defined on (0, =).

A corresponding spectral-density function may be computed for a discrete
time series of finite length, consisting of N samples acquired at times
At apart. The equivalent of the single-sided spectrum for such a time
series is termed the periodogram and is given by

2

Px(kAf) * Not

X*(kaf) X(kaf), (40)
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where X(kaf) is the discrete Fourier transform of x(jat) given by

“2mi (3K

Xx(kaf) = st T x(jat)e 2"iCR) (41)

all j
j=0, ... o N-1, k=0, ..., N2,
and

of = e

However, the periodogram is not the best estimate, in the statistical
sense, of the spectrum.8 welch15 has described a procedure for obtaining
a statistically stable spectrum by dividing a time series into L equal
length segments, computing the periodogram of each segment, and averaging
the periodograms to yield

§x(kAf) - P (kaf) . (42)

1 72

it e~

1
Ly

The periodograms are treated as independent samples of the same process.
The averaging indicated by Eq. (42) is referred to as an ensemble average
since the L segments taken together form an ensemble of realizations of
the process under consideration.

The frequency resolution of the spectral estimate, §x(kAf), given by
Eq. (42) is

of = e s (43)
S

where NS is the number of samples in a segment. Since the discrete
time series acquired from the CTD step response tests were short in
length (on the order of 400 ms), division into segments would have
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resulted in a coarse frequency resolution for §x. In order to achieve

the maximum possible resolution, each response-test time-series was treated
as an independent realization of the sensor's response to the same step
change input. Periodograms for all conductivity response tests were
computed and averaged to obtain a conductivity response spectrum via

Eq. (42); a temperature response spectrum was obtained in the same way.

Computation of the Periodogram

Computation of the periodogram of the step response function was performed
by treating the high-speed time series data as though they were equally
spaced in the following manner. A subset of thirty-two consecutive samples
was selected from the original forty-plus available samples, taking care to
center this subset so that both upper and lower levels of the step were
present. The daa were then normalized to a unit step in the manner
described in Section 2.3. Using the method described by Blackman and
Tuckeyle, a linear trend was removed from the time series, the trend

having been determined by fitting a linear form to the original data.

For high speed CTD data, the average difference between samples,

w - A0 at) - x(0) (44)
S

was used to estimate trend,
. Ns-l .
3) =G - () - ax . (45)

Each sample in the sequence was then corrected for this trend as well
as any offset in the sequence to obtain a corrected time series

x (3ot) = x(dot) - <(§) - X , (46)
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where the offset is

N -1
-1 3 .
X =5 I x{(jst) . (47)
s j=0

A discrete transform of the corrected time series was computed using a

32 point fast Fourier transform (FFT) routine due to Brenner17. The

routine computes

N -1 .

s oerdk
Flkaf) = T x (jat)e 2" ({7 (48)

& c s

j=0

for k =0, ... , N.-1. Then from Egs. (40) and (41) the periodogram is
P (kef) = EBE E"(kaf) Flkaf) (49)
s

and a power spectrum is computed by averaging the periodograms of L
different response tests using Eq. (42).
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Transfer-Function Estimation from Unequally Spaced Data

Recall that in Section 2.1, Shaw's method was applied to obtain bounds

on the power spectrum of a process when unequally spaced time-series data
are processed via a discrete Fourier transform into a spectral estimate.
To consider the effects of aliasing, it is not necessary to have phase
information from the transfer function, T(f), and, hence, it is sufficient
to know only the amplitude, |T(f)| or equivalently the power transfer
function |T(f)|2.

From Eq. (36), we have

TOTE) = T0IE = (203 (FX,(F) (50)

*
In discrete notation, substituting for Xz(f)xz(f) from Eq. (40), we have

(20£)2 . Nebt . P, (kaf)

IT(kaf)|? = (51)

Since the best estimate of Px(kAf) is the ensemble average, the
estimation of the power transfer function is

T(kaf) |2 = s(2nf)?N ot S (kaf) (52)
But, we may also show that

- L
Tef)|2 = L1 |T(kaef)] 2 (53)
2=1

=

where [T(kAf)IE2 is computed from P, via Eq. (51).
) _
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Aside from the statistical problem of spectral estimation using discrete
data, which has been dealt with through ensemble averaging, an additional
problem exists in that it is not possible to estimate the output spectrum,
Sa(f), directly due to the unequal spacing of data. However, it is
possible to place bounds on Sp(f) using Eq. (17). Extending this bounding
concept to the transfer function, we have

IThkaf)| > IT(kaf)l > [T (kaf)], (54)

where lTh(kAf)lis the transfer function computed from the transfer
function estimate of the unequally spaced data,

ITh(k8 )| = YT ka2 (55)
and
IT'(kaf)| = ([T(kaf)|2 - 2Ngat@ kaf)2aSy(kaf))d  (56)
with
2
8S, (kAf) = N:th 19sz ()2 §, (1af) (57)

To summarize, we determine the conductivity-sensor transfer function in
the following way: The periodogram of each conductivity response test is
computed, treating the high-speed sensor-output time series as though the
data were equally spaced. Then, periodograms of all conductivity tests
are averaged to obtain an estimate of the step-response spectrum which is
used in Eq. (54) to place upper and lower limits on the true transfer
function of the conductivity sensor. Limits for the temperature-sensor
transfer function are obtained in a corresponding fashion.
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2.5

EFFECT OF ALIASING UﬁON SPECTRAL DATA

In Section 2.4, the relationship between input and output of a sensor
was described in the frequency domain. Extending this concept to the
power spectrum, we have

S,(F) = |T(£)]% 5,(F) (58)

where Sl(f) and Sz(f) are, respectivaly, the power spectrum of the physical
process being measured and the spectrum of the sensor output signal.

In compensating for the transfer effect of a sensor in the frequency
domain when discrete calculations are employed, the measured spectral
estimate is corrected

S, (kaf) = L S, (kaf) (59)

| T(kaf)|

to obtain an estimate of the spectrum of the physical process. While

Eq. (59) is mathematically correct for all frequencies in Sz(kAf), in
practice it may not be used for frequencies at which |T(kaf)| becomes
small. This is because errors in the measured spectrum which occur as

a result of the discrete spectral-estimation process and instrument noise,
as well as uncertainty in the transfer function itself, are greatly
magnified. Figure 8 shows a hypothetical sensor and the relationship
between its input, the transfer function, the measured spectrum, and

the corrected result.

Aliasing

When a continuous time signal is digitized into discrete samples taken

at times 4t apart, a discrete transform (and a periodogram) of the time
series may be computed using Eqs. (40) and (41). However, these frequency -
domain functions are defined only for discrete frequencies up to the
Nyquist frequency

Sl .1
fn = 2% = =t - (60)
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Power Spectrum of Input Signal, Sl(f)

(a)
Sensor Power Transfer
Function, [T(f)(?
(b)
Spectrum Measured
by Sensor, Sz(f)
(c)
Corrected Spectrum
5, (f)
2
|T(f)]
(d)

Frequency

Figure 8. Comparison for a Hypothetical Measurement.
(a) sensor input, (b) transfer function, (c) measured spectrum,
and (d) corrected spectrum.
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If information is present in the continuous time signal at any frequency
greater than fy, the power spectral density (PSD) associated with such
information will appear in the discrete spectrum at a frequency

kaf

2fy - f (61)

if fy < ' < 2f, and

kaf = f - 2f, (62)

for 2fy < f" < 3fy. Comparable relationships exist for frequencies higher
than 3fy.

Figure (9b) shows the effect of aliasing in the hypothetical measured
spectrum of fig. (8c) for a specific Nyquist frequency as shown. Note
that since no information is present in the spectrum of fig. (8c) above
2fn, then only Eq. (61) will apply in predicting aliasing. The broken
line shows the spectrum as it would have appeared without aliasing.

Figure (9a) repeats the measured spectrum from (8c), while fig. (9c) shows
the effect of transfer correction on the aliased spectrum. Again, the
broken line represents the corrected spectrum as it would have appeared in
the absence of aliasing.

Aliasing in the Power Spectrum Quantified

As may be seen from the foregoing discussion, when a continuous physical
signal is sensed and digitized, the potential for aliasing exists.
However, aliasing will occur only if: 1) information is present in the
signal at frequencies greater than the Nyquist frequency, and 2) the
sensor response function is non-zero at these frequencies. In order to
quantify the effect of aliasing, it is necessary to know both the transfer
function and the true spectrum of the measured process.
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Spectrum Measured
by Sensor

(a)

Discrete Spectrum
with Aliasing

(b)

Corrected Discrete
Spectrum with Amplified
Error

(c)

Nyquist Frequency

Figure 9. Effect of aliasing on the discrete spectrum. Broken line
shows spectrum without aliasing from higher frequencies. Hypothetical
spectrum from Figure 8c is used.
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When aliasing occurs, the measured spectral estimate includes terms from
higher frequencies in addition to the fundamental term which is desired.
The aliased spectral estimate is

S, (kaf) = S,(kaf) + S,(F') + §,(6%) + ..., (63)

where f', f", ... represent frequencies from which aliasing has occurred.
From Eq. (63), substituting for f' and f" from Eqs. (61) and (62), and
substituting for S, from Eq. (59), we have

Sp(kaf) = |T(kaf)| %S (kaf) + |T(2f-kaf) | %5, (2F -kaf) +
) (64)
+ [T(kof - 26,) 125, (kaf - 2fy) + ...

If this aliased spectral estimate is treated as an accurate one and is

corrected for the sensor transfer effect at the frequency kaf to obtain

an estimate of the input spectrum, as in Eq. (59), we have
|T(2f-kaf)|2 .

§'(kaf) =§ (kaf) + — S, (2f, ~kaf) +

: (65
T(kaf - 2F0)1% )
+

_ S, (kaf - 2F,) + ...
|T(kaf)| 1 N

Because the spectral estimates are non-negative for all frequencies, the
corrected spectral estimate will be biased larger due to the aliased
spectral density by an amount

A(kaf) = gi(kAf) - §,(kaf) . 4 (66)
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Whether this bias creates a significant error in the estimated PSD depends
upon the relative magnitudes of Sj(k f) and A(k f). The relative error
within a frequency band is then

Eg(kof) = Alkaf) (67)
Sl(kAf)

Because only the LHS of Eq. (63) is produced as a result of the digitiza-
tion and spectral analysis, it is impossible to know the amount of error
which will be introduced by the higher frequency terms in any given
circumstance. Various techniques are available to prevent contamination
of a measurement by aliased data, but a discussion of these is beyond the
scope of this investigation. If none of these techniques is applied to
the CTD data, then aliasing may occur. It is possible to gain an
understanding of the magnitude of the problem by assuming a form for the

measured spectral estimate Sj(kaf). In fact, a quantitative prediction of
gs(kaf) may be made if we assume that the input spectrum takes some spe-

cific analytical form, a(f), when f is one of the discrete frequencies
present in the spectral estimate. The relative error is then

|T(2f -kAf)I2 a2, -kaf)

Eg(kaf) = ———y B 7 el

| T(kaf) | @
(68)

1T (kaf-2f,) |2 a(kaf-2f, )
N N

+ _ . +

|T(kAf)|2 alkAfS
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Error in Variance Estimation Due to Aljasing

Parseval's energy theorem18 permits the variance of a time series to be
estimated from the power spectrum, assuming that the time series satisfies
those properties which enable the spectrum to be estimated in the first
place, i.e., stationary, zero-mean process. Then

o =af J S (kef) . (69)
all k

Equation (69) shows that the power spectrum of a time series, here ap-
proximated by its spectral estimate, is, in fact, a spectral decomposition
of the time-series variance. This fact is useful, enabling the contribu-
tion to variance of specific frequencies in the spectrum to be estimated
by summing §x over just those frequency bands of interest.

Furthermore, conductivity and temperature time series are routinely
low-pass filtered to remove high-frequency information which gives rise

to spikes in a computed salinity time series. Energy aliased prior to
filtering may still remain in the filtered data and will bias the estimate
of variance within the passband. If a perfect low-pass filter transmits
all information at frequencies below fc and blocks all information above

fc’ the variance of the filtered time series is

o l=af I 5 (kef), (70)
¢ all kek,

where

a1

i A £ g ks RSO Mk S AR IR




If aliased information has contaminated the filtered data, the biased
computed variance will be

o 2 =af T S (kef) . (71)

The relative error in variance will then be
0'2-0 2
_ ¢ ¢
E = 5 . (72)

[»
¢

As before, we may quantify the relative error in variance by assuming
a form for the input spectrum, a(f). Then Eq. (72) becomes

) kéﬁc ES(kAf) a(kaf)

= : (73)
2 a(kaf)
¢ @k

E

C
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2.6

EXTENSION TO SALINITY

Absolute salinity is defined as the ratio of the mass of dissolved
material in seawater to the mass of seawater, expressed in parts per
thousand by weight.19 In practice, field salinity is determiend from
conductivity measurements. In 1978, a Practical Salinity Scale was
established by the Joint Panel of Oceanographic Tables and Standards
(JPOTS). Gieskesll presents the algorithm for implementing the Practical
Salinity Scale to compute salinity from measurements of conductivity,
temperature, and pressure. The relationship of salinity to the measured
parameters is non-linear. Therefore, it is not possible to predict ex-
plicitly the relationship between the power spectra of temperature and
conductivity at constant pressure and the power spectra of salinity, a
relationship which would permit extending the results of the preceeding
discussion on aliasing to predict errors in the salinity spectrum. An
alternative approach is available, which allows approximation of the
frequency domain relationship.

Since salinity, S, is a function of pressure, P, temperature, T, and
conductivity, C; an infinitesimal change in salinity, dS, is linearly
related to similar changes dP, dT, dC in any of the three parameters:

CB gp e B gp 4 B
dsS = =P dp + T dT + = dC . (74)

The relationship is approximately true for finite but small changes, aC
and AT, and, for constant pressure, may be written

_ 3 3s
AS =z N AT + 5C AC | (75)

Expressions for %% and %% are derived from the JPOTS algorithm in Appendix

B. An algorithm for computing these quantities will be presented.
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Consider a time series of N samples of conductivity and temperature
sampled simultaneously at constant pressure from which a time series of
salinity may be constructed. Each of the sequences of samples may be
expressed in the form

Xy = X + ij R (76)

where X is the mean of the time series. If the two sampled time series
are composed of values which are close to the mean value, then the ij
will be small for all j and Eq. (75) will be approximately correct.

The variance of each of these time series is

N
2 _1 - 2
o, =% 1 (x-x;)
X N j=1 J
(77)
N
1 z 2
= = ax:<
N j=1 3

which we see from Eq. (69), may also be determined by summing the spectral

estimate over all frequencies. It is shown in Appendix C that

0 2 = 02(C, o + 0 2(ET)og” (78)
where
- = 3
o.(C,T) = <% . _ . (79)
T T e=C, T=T
and
- = 25
e.(C,T) = ==| . - (80)
C 3C C=c, T=T
a4

|



Spectral Density

Substituting from Eq. (69) into Eq. (78), we have

IS (kaf) = o 2(T.7) T S.(kef) + 0.2(C,7) T S.(kaf)  (81)
all kS T all k| ¢ all k C

By extending the linear relationship between AS, AT and AC expressed in
Eq. (75), we may remove the summation from each of the terms in Eg. (81),
to yield an order of magnitude estimate for the salinity spectrum.

§S(kAf) eTZ(E,?)§T(kAf) + ecz(E,f)éc(kAf) . (82)

n

Equation (82) is developed in Appendix D. Now, by the same derivation
which produced Eq. (68), we may compute the relative spectral error in the
salinity function

EST(kAf) : eTZ(E,?) + ESC(kAf) ‘o
E. (kof) = — e (83)
s o, 2(C,T) + 0 2(E.7)

with the spectral error in temperature and conductivity, EST and ESC'
respectively, given by Eq. (68).

Variance Error

Again, after the manner of Section 2.5, we may express the variance error
in a passband due to low-pass filtering with a cutoff frequency fc. The
relative variance error in salinity wili be

2 2,5 =
E o, °(C,T) + 0
T % T Cc o

IR
s GCT o (c,T) + oc -~ O

%
(84)
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with Eo and Eo the relative variance error in conductivity and
C T
temperature, respectively calculated from Eq. (73), and oS¢ and ¢
C T

the true variance, in the passband, of conductivity and temperature,
respectively, given by

2 _ f 7 a(kaf) . (85)

X kjkc

°c

In summary, by making the assumption that a quasi-linear relationship
exists between changes in conductivity, temperature, and salinity and by
assuming an analytical form for the spectra of the measured processes,
conductivity and temperature, it is possible to develop expressions for
the error due to aliasing in the salinity spectrum and in the variance
within a frequency passband.

These expressions, while approximations, at least provide a means of
estimating the errors due to aliasing. It should be noted that the cor-
responding expressions, developed in Section 2.5 for temperature and
conductivity, are exact and are as accurate as the assumed input spectral
form, while the validity of the expressions for salinity is dependent
upon the assumption of quasi-linearity.

46




3.1

A A . e S e o

3.0 RESULTS

High-speed temperature-and conductivity-time series were acquired and
analyzed to produce an estimate of spectral error for both measured
parameters and salinity. A total of five temperature and seventeen con-
ductivity-response-test time series were made for analysis.

For each parameter, the individual time series was first normalized to a
unit step, fit to an exponential decay, and this fit was then used to
estimate the variance of the timing errors, as described in Section 2.3.
A mean variance of timing errors was taken over all response tests for a
parameter. A periodogram of the unit step was computed for each time
series using Eq. (40) and the periodograms of allresponse tests for a
parameter were averaged to obtain the ensemble spectral estimate, S(kaf).
An upper bound for the transfer-function estimate was obtained from the
ensemble spectral estimate using Eq. (55) and the mean timing-error
variance was used to estimate a lower bound for the sensor transfer func-
tion (Eq. (56)).

Use of the transfer upper bound, Ifh(kAf)lz, for estimation of spectral
error due to aliasing gives a worst case (upper limit) estimate.
Therefore, this approach was followed throughout. The spectral error,
Eg(kaf) was then estimated for several input spectral forms; an estimate
of time series variance error, EOZ, was also obtained.

Results of these computations for both temperature and conductivity are
presented in sections 3.1 and 3.2. Section 3.3 extends the results to
estimate error for computed salinity.

TEMPERATURE
Five respunse tests of temperature were evaluated. Figure 10 is a

logarithmic plot of the normalized time series with data plotted as though
they were sampled at regular time intervals. In each case, plotting of
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the curve began with the first point after an identifiable break in the curve.
The repeatability of the sensor temperature response and its close approxima-
tion to an exponential decay are evident in fig. 10.

Figure 11 is a logarithmic plot of data from response test number four. Data
are plotted as though acquired at equal intervals, At = 0.01067 sec. The
best fit curve is also shown for comparison.

Table 1 presents results of the timing-error analysis for all five response
tests. The identifier for each data run in this and all following tables uses
the labeling scheme described in Appendix A. The second column lists the number
of data points used in the curve fitting process and in the calculation of the
timing-error variance. The error-analysis software which performed these
calculations was set up to allow the operator to select a subset of the response-
test time series for analysis by selecting the beginning and ending points of
the subset. The subset of data that most closely fit the exponential curve
was chosen for evaluation in each case. The constants o and t  from Eq. (18)
were calculated for each best-fit curve as was the time constant for the decay,
given by the reciprocal of a. The timing-error variance is presented in

column six of the table. Mean values for the time constant, for alpha, and

for the timing-error variance, oez, are also tabulated.

A periodogram of each normalized step-response time series was computed in

the manner described in Section 2.4. The software routine performing these
calculations simply selected the first 32 data points for the spectral cal-
culations. The time series was corrected for trend and offset using Eq. (46),
transformed via a fast Fourier transform, and the periodogram was calculated
via £q. (49). Figure 12 shows the original time series, while fig. (13) shows
the normalized, trend and offset corrected data prior to processing via FFT.

The individual step-response periodograms for temperature are presented in
Table 2, as is the ensemble average spectrum. A comparison of PSDs between
response tests emphasizes the consistency of results obtainable by this
testing procedure.
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Power transfer functions were computed from each of the temperature-
response periodograms using Eq. (50). These appear in Table 3 as does the
ensemble estimate, |?h(kAf)|2. computed via E£q. (53). These data are
plotted in fig. (14), the numbers corresponding to the run number shown in
Table 3. The solid curve represents the estimated power transfer
function.

Shaw's method was used to place bounds on the transfer function estimate,
as described in Section 2.4. Upper and lower limits for the power and
amplitude transfer functions are given in Table 4. The power transfer-
function limits are plotted in fig. (15).

As described in Section 2.5, in order to quantify the extent to which
aliasing will affect temperature (or other CTD) data acquired at the
standard data rate, it is necessary to specify the spectral form of the
input to the sensor. The particular shape of the spectrum, o(f), and the
shape of the sensor transfer function completely determine the extent of
aliasing; therefore the choice of a(f) has a strong effect as will be
demonstrated below.,

Physical considerations must play a role in the selection of a spectral
form. Bracewelll4 has shown that if a function and its first n-1 deriva-
tives are continuous, then the transform of the function dies away at
least as rapidly as f-(n*1) for large f. Similarly, its power spectrum
dies away at least as rapidly as f-2(n+l),

Real-world physical processes usually are assumed to be continuous. A
less restrictive model for the input functions would be a signal which
possesses, at most, a finite number of finite discontinuities, so that its
first derivative is impulsive. Such a signal would possess a transform

which behaves as f-1 for large f, and a power spectrum which decays as
f-2-

A worst-case model for the input functions which results in a poor signal-
to-noise ratio is one whose spectrum is white noise for virtually all
frequencies. Another class of signals would be those whose spectra decay
as f=N down to some constant noise level. '
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The input spectral form for all these cases may be represented by
a(f) = 1/FM + 1/fFg" (86)

with the second term being the constant-noise spectral density. Thus, fg
represents the frequency at which the signal-to-noise power ratio is
unity, the signal being given by 1/f". The relative spectral error, given
by Eq. (68), and relative variance error, given by Eq. (73), were calcu~
lated for three specific cases corresponding to those described above.
Table 5 describes these three test cases. The relative spectral error in
temperature for each of the test cases is shown in Table 6. The same data
are plotted in fig. (16).

Recall that this parameter is the band-by-band ratio of aliased to
unaliased spectral density, allowing for transfer function effects of the
sensor prior to digitization and correction for transfer effects after
aliasing occurs. The power-transfer-function upper limit from Table 4 was
utilized for these calculations. The wavelength entry in the table is
based upon the laboratory-response-test drop rate of 0.75 m/s and repre-
sents the spatial resolution corresponding to the particular frequency.

Test Case 1, white noise, is a pessimistic "worst case" which one might
not expect to encounter in the real world. As shown in Table 6, spectral
error is significant in all parts of the computed spectrum due to the fact
that the sensor transfer function is non-zero beyond the Nyquist fre-
quency, 15.63 Hz, for 32 ms sampling. Test Case 2, on the other hand,
represents an optimistic case in which the spectral decay is not affected
by instrumentation noise at any frequency. Clearly, aliasing does not
present a problem except in that portion of the spectrum near the Nyquist
frequency. Finally, Test Case 3 is an intermediate case more likely to be
encountered than either of the other two cases in the course of real-worild
measurements. In examining the results of Test Case 3, it is seen that
spectral error remains less than 10% until spatial resolution becomes less
than 0.10 m. The qualifying assumption is that the S/N ratio equals 1 at
the Nyquist frequency. Experience with this instrument has shown this to
be a reasonable assumption. '
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Table 6. Relative Spectral Error in Temperature For Three Spectral Input

Forms.
Center
Frequencies Wavelength
(Hz) (m)
0.00 -
2.93 0.256
5.86 0.127
8.79 0.085
11.72 0.064
14.65 0.051

Table entries are percentages.

Relative Spectral Error (Per Cent)

White
Noise

7.4
19.5
28.1
40.9
61.3

103.4

62

1/£2

0.0
0.1
0.9
3.8
13.1
58.7

1/¢2 + White Noise

0.0
0.4
3.7
11.9
29.5
78.5
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Cumulative error in variance also was computed. Recall that this repre-
sents the error which would be introduced by aliasing in a calculation of
the time-series variance if the time series were numerically low-pass
filtered after sampling, as is done with temperature and conductivity data
to eliminate spikes in computed salinity. The cumulative error data are
presented in Table 7 as a function of the low-pass-filter cutoff frequency
for several different frequencies. These frequencies correspond to upper
limits of the discrete frequency bands produced by the response-test
spectral processing. Figure 17 is a graphical presentation of the same
data for each of the three test cases.

In comparing the data of test cases 2 and 3 with corresponding results for
relative spectral error, it is interesting to note that even though
aliasing results in significant error in the spectrum at higher frequen-
cies, the effect on computed variance is considerably less. Since the
assumed temperature spectrum decays as 1/f2, the major contribution to the
variance is at lower frequencies where aliasing error is relatively unim-
portant. Thus, even though the sensor responds to energy at fregquencies
above the Nyquist, the fraction of total signal energy available at those
frequencies is small. Therefore, when this energy is aliased into the low
frequency, high-energy region of the spectrum, its effect is relatively
unimportant.

The white-noise case emphasizes the effect of the input spectrum. Since
there is no decay in the spectrum at high frequencies, considerable energy
is available to be aliased, the extent being determined by the transfer
function., Therefore, the effect of aliasing on computed variance due to
white noise is noticeably greater at all frequencies.
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Table 7. Cumulative Aliasing-Induced Error in Temperature Variance after

Low-Pass Filtering. Data presented are percentage error for various
filter cutoff frequencies, calculated for three different input

spectral forms.

Variance Error (Per Cent)

Frequency
Limit White 1/£2
(Hz) Noise
1.46 7.4 0.0
4,39 15.4 0.0
7.32 20.5 0.0
10.25 26.3 0.1
13.18 4.1 0.2
15.63 44.9 0.4
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3.2

CONDUCTIVITY

Evaluation of CTD conductivity response tests was conducted in the same
manner as the temperature evaluations described in Section 3.1.
Initially, five conductivity tests were performed. A preliminary evalua-
tion of these data revealed substantially greater variation from one test
to the next. Therefore, additional test data were acquired for the pur-
pose of obtaining a more reliable estimate of the sensor's response. The
five initial response tests are referred to as data set A, while the
twelve additional response tests are referred to as set B. The same CTD
unit and conductivity sensor were used in both tests. However, several
weeks elapsed between performance of the two tests. Evaluations of the
two sets were handled separately so that any variation in the data due to
sensor changes or changes in test conditions could be identified. None
were seen,

Figure 18 is a logarithmic plot of the five normalized time series of con-
ductivity obtained during test A. Data are plotted as though acquired at
equal intervals. Again, plotting of points begins with the first point
after an identifiable break in the curve. Two features are obvious in
this figure. First, as indicated above, the conductivity data are less
consistent from test to test than were the temperature data. Secondly,
instead of a simple logarithmic response, as in the case of the tempera-
ture sensor, the response of the conductivity sensor is clearly more
complex. Although not plotted, data from Test B show the same features.

The conductivity response curve may be broken into two regions. Initial
sensor response to the step change is sharp. On a logarithmic plot, such
as figure 18, this portion of the curve is approximately linear; its dura-
tion is on the order of 40 - 50 ms. The slope of the logarithmic curve is
steep, indicating a relatively short time constant, and is fairly consis-
tent from test to test.
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The second region of the curve is even more linear than the first, sug-
gestive of a more truly exponential response to the step change. The
duration of this portion of the curve is greater, on the order of 80 - 120
ms. The time constant is substantially longer, but variation between
tests is greater, as may be seen in figure 18. Figure 19 is a logarithmic
plot of an individual response test, number three from set A. The deline-
ation into two distinct regions is evident.

Previous researchers have noted this feature of the Neil Brown conduc-
tivity sensor. Gregg, gﬁ_gl,,13 have developed a computerized model of
the physical behavior of the cell which accurately predicts the sensor
response to a step input. The initial sharp response is associated with
the initial encounter between the sensor and the conductivity interface,
as the water of “"new" conductivity first enters the cell. The slower
response is attributed to a flushing action which takes place as "old"
water is gradually washed from the region of the sensor walls, both
interior and exterior. Since the flow of water through and around the
sensor is essentially laminar, flushing of residual water is described
approximately by an exponential decay.

The observed variability in the flushing region of the curve is probably
due to variation in the drop rate of the CTD unit through the conductivity
interface. A higher drop rate would result in more rapid flusing and a
steeper logarithmic response curve, while the opposite is true for a slow
drop rate. From figure 18, we see that test COlA has a steeper slope,
while the other four have slopes which are approximately the same and are
shallower than the first. Since no means was available for controlling
the drop rate of each individual test, some variation is expected.

Timing-error analysis of conductivity data was conducted, as described
previously, by fitting an exponential decay to any desired region of the
time series. Table 8 presents results of the analysis for data set A,
with the curve fit performed only over the initial, steep region of each
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curve. A much greater variation in curve parameters from test-to-test
is evident, relative to the equivalent data for temperature. A similar
curve fit was conducted for the slow response portions of these same
curves and results are presented in Table 9.

Again, the time constant for the first test is significantly less than the
other four. Note that the mean timing-error variance, oez is considerably
greater than for the temperature tests. This increase in variance of con-
ductivity is thought to be a measure of the poorness of fit of either region
of the response curve to an exponential decay. Table 10 presents results

of the timing analysis for data set B. The steep region of the curve was
fit in all twelve of these tests. Variability of all parameters is again
evident.

Since the sample timing error is determined solely by the data sampling
circuitry and not by any characteristic of the sensor or the sensed parameter,

the true timing error should be the same for both temperature and conductivity.

Since the greater variance for conductivity is attributed to the larger
residuals of the exponential fit as well as to the timing error, oe2 for
temperature, the smaller of the computed timing-error variances, was used
in all subsequent calculations of spectral error for conductivity.

A periodogram of each normalized conductivity step-response-time series was
computed in the manner described for temperature response. The periodograms
for data set A are presented in Table 11, while Table 12 contains periodogram
PSDs for conductivity data set B.

Power transfer functions for conductivity were computed using Eq. (50). For
data set A these are presented in Table 13, and for data set B in Table 14.
Ensemble average transfer functions are presented for each data set. Plots
of these data appear in figs. 20 and 21. The ensemble average for each set
is plotted as the solid curve in each case. These data also display con-
siderable variation from one run to the next.
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The ensemble average transfer functions are presented in Table 15 together
with an average for all conductivity response tests. Upper and lower
limits for both power and amplitude transfer functions obtained by using
Shaw's method, as before, appear in Table 16. Transfer function limits
are plotted in figure 22. As in the case of the temperature calculations,,
the upper-limit transfer function was used for computation of aliasing in.
order to obtain a "worst case" estimate.

Estimates of relative spectral error for conductivity were made employing
the same three spectral forms and technique as was used for temperature.
The results are tabulated in Table 17 and plotted in figure 23. Although
the high-frequency response of the conductivity sensor is greater than far
the CTD temperature sensor and the relative spectral error is somewhat
greater in all frequency bands for conductivity, the results are not
significantly different.

Cumulative, aliasing-induced error in the variance of conductivity was
also computed and the results are presented in Table 18. As shown, the
conductivity variance error differs only slightly from the temperature
variance error. Results are plotted for each of the three cases in figure
24,
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Table 15. Ensemble Average Power Transfer Functions for Conductivity Data
Sets A and B and Weighted Average for A1l Conductivity Data.

Transfer Function

Frequency Set A Set B Average
(Hz) (5 Runs) (12 Runs) (17 Runs)
2.93 0.756 0.765 0.762
5.86 0.657 0.632 0.639
8.79 0.525 0.536 0.533

11.72 0.418 0.408 0.411
14.65 0.283 0.245 0.256
17.58 0.188 0.165 0.172
20.51 0.140 0.130 0.133
23.44 0.114 0.089 0.096
26.37 0.082 0.055 0.063
29.30 0.089 0.094 0.093
32.¢3 0.085 0.123 0.112
35.16 0.076 0.096 0.090
38.09 0.090 0.122 0.113
41.02 0.137 0.158 0.152
43.95 0.122 0.146 0.139
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Table 16. Transfer Function Limits for CTD Conductivity Response.
Wavelengths correspond to drop rate of 0.75 m/s,

Power Transfer Function Amplitude Transfer Function

Frequency Wavelength Upper Lower Upper Lower
(Hz) (m) Limit Limit Limit Limit
0.00 - 1.000 1.000 1.000 1.000
2.93 0.256 0.762 0.759 0.873 0.871
5.86 0.127 0.639 0.609 0.799 0.781
8.79 0.085 0.533 0.487 0.730 0.698
11.72 0.064 0.411 0.352 0.641 0.594
14.65 0.051 0.256 0.189 0.506 0.435
17.58 0.043 0.173 0.105 0.416 0.325
20.51 0.037 0.133 0.067 0.365 0.260
23.44 0.032 0.096 0.031 0.310 0.175
26.37 0.028 0.061 0.000 0.247 0.000
29.30 0.026 0.093 0.016 0.304 0.125
32.23 0.023 0.112 0.024 0.335 0.154
35.16 0.021 0.092 0.000 0.303 0.000
38.09 0.020 0.117 0.000 0.342 0.000
41.02 0.018 0.147 0.009 0.384 0.095
43,95 0.017 0.143 0.035 0.378 0.187
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Table 17.

Center
Frequency
Hz

0.00
2.93
5.86
8.79
11.72

14.65

Wavelength

(m)

0.256
0.127
0.085
0.064
0.051
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Relative Spectral Error in Conductivity for Three Spectral Forms.
Table entries are percentages.

Relative Spectral Error (Per Cent)

White

Noise

8.2
21.5
26.7
46.2
67.2

115.0

1/¢2 +

lifg White Noise
0.0 0.0
0.1 0.4
1.0 3.5
4.6 13.8
15.9 33.4
61.0 85.0
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Table 18.

Frequency
Limit
(Hz)

1.46
4.39
7.32
10.25
13.18
15.63

Cumulative, Aliasing-Induced Error in Conductivity Variance After

Low-Pass Filtering.

spectral forms.

Data presented are percentage error for
various filter cutoff frequencies, calculated for three different

Variance Error (Per Cent)

White
Noise

8.2
17.1
20.9
28.1
36.8
49.1

1/f2

0.0
0.0
0.1
0.1
0.2
0.4

1/ +

White Noise

0.0
0.1
0.2
0.4
0.7
1.2
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3.3

SALINITY

An approach for extending estimates of spectral error and variance error to
error in salinity due to aliasing was developed in Section 2.6. As stressed
previously, the expressions derived in that section and in Appendix C are
approximate. However, the relationship between salinity, conductivity and
temperature at constant pressure is nearly linear and, therefore, the accuracy
of the approximate expressions is expected to be high.

The linearity question may be more definitively considered in the following
way. If salinity were a linear function of temperature and conductivity,
one could write

S(T,C) = ;T + ¢, + cg, (87)
where Cys Cos and Cqy are constants. Then the total derivative of salinity
would be

ds(T,C) = cldT + c2dC. (88)

But from Eq. (74), the exact expression for the total derivative of salinity
is
ds(T,C) = OT(T,C)dT + OC(T,C)dC, (89)

where oT(T,C) and oc(T,C) are the first partial derivatives of salinity
with respect to temperature and conductivity, respectively.

An algorithm for computation of o7 and 0c is developed in Appendix B.

This algorithm was implemented and used to compute Or and 0. at zero pressure
for a range of combinations of T and C. The results for oy are plotted in
fig. 25 as a family of curves which present o; as a function of conductivity.
Each curve corresponds to a single temperature. Figure 26 is an equivalent
plot of A Clearly, or and o, are not constant.
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However, review of these two plots shows that both or and ec change relatively
slowly with temperature and conductivity. Therefore, for small changes in T
and C, salinity may be treated as linear and the correctness of previous
assumptions to this effect is confirmmed.

Equation (83) was used to compute the relative spectral error in salinity
due to aliasing. As in the case of both conductivity and temperature, three
different spectral cases were considered for purposes of the calculation.

In each case the same spectral input was assumed for both temperature and
conductivity. Table 19 is a tabulation of the results for the specific case
of zero pressure, a temperature of 5.00°C, conductivity at 33.45 mS/cm, and
salinity of 35.00 ppt. The data are presented graphically in fig. 27. As in
the case of both temperature and conductivity, the extreme case of white
noise shows significant error in all frequency bands, while the more realistic
case of 1/f2 decay plus white noise shows error less than 10% while the wave-
length (spatial resolution) is greater than 0.10 m.

The effect of different temperature and conductivity combinations at a con-
stant salinity of 35.00 ppt was also considered. Results for an assumed
input spectrum decaying as 1/f2 + white noise are tabulated in Table 20. The

effect of changing temperature and conductivity conditions is almost undetectable.

Comparing these results to those presented in Table 19 serves to emphasize the
importance which is played by the input spectral form in determining the
extent of aliasing in any parameter, including salinity.

The effect of aliasing on computed salinity variance was also evaluated

using Eq. (84). The results were obtained for several cutoff frequencies,
assuming that the digitized time series was idealy low-pass filtered prior
to calculation of the variance. These are presented in tabular form in Table
21 and in graphical form in fig. 28. Three input spectral forms were con-
sidered and results were obtained for zero pressure, temperature of 5.00°C,
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Table 19. Relative Spectral Error in Salinity for Three Input Spectral Torms.
Salinity is computed for pressure = 0.00 dbars, temperature =
5.00 °C, conductivity = 33.45 mS/cm, salinity = 35.00 ppt.

Relative Error (per cent)

Frequency Wavelength White 1/f2 1/f2 +
(Hz) (m) Noise White Noise
0.00 - 7.8 0.0 0.0
2.93 0.256 20.6 0.1 0.4
5.86 0.127 27.3 0.9 3.6
8.79 0.085 43.8 4.2 12.9
11.72 0.064 64.6 14.6 31.6
14.65 0.051 109.9 60.0 82.1
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Table 21,

Frequency
Limit

(Hz)

1.46
4.39
7.32
10.25
13.18
15.63

‘.:Zj?'

Cumulative Aliasing-Induced Error in Salinity Variance After Low-Pass
Filtering. Data presented are precentage errors for various filter
cutoff frequencies, calculated for three different input spectral
forms. Salinity is computed for pressure = 0.00 dbars, temperature =
5.00°C, conductivity = 33.45 mS/cm, and salinity = 35.00 ppt.

Variance Error (Per Cent)

White 1/§2 1/§2 + White Noise
Noise

7.8 0.0 0.0

16.3 0.0 0.1

20.7 0.0 0.2

27.3 0.1 0.4

35.6 0.2 0.7

47.2 0.4 1.2
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conductivity of 33.45 mS/cm, yielding a salinity of 35.00 ppt. The
results obtained differ hardly at all from those of conductivity and
temperature. Except for the white-noise case, variance error is very low
for low-pass filtering schemes which one might employ.
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4,0 COMPARISON WITH OTHER WORK

Gregg, et al., (1982)13 describe an in-depth study of the transfer charac-
teristics of the NBIS 3 cm conductivity cell. This definitive work
discusses the physical basis for the observed effects and describes a
physical model which incorporates these salient characteristics of the
sensor and accurately predicts the measured transfer function.

The technique used by Gre9920 for determining the conductivity-sensor
transfer function utilizes a salt-stratified tank in which a stable,
two-layer interface is maintained with the aid of stirring grids. Measure-
ments of the interface show the transition region to be ~2 cm thick. A
small, two-electrode conductivity probe consisting of two 0.1 mm-diameter
wires mounted 2 mm apart was used as a conductivity reference to which the
test conductivity sensor was compared. Thus, assumptions regarding the
thickness or other characteristics of the interface region were unneces-
sary. The test and reference sensors were mounted on a ram, the speed of
which was controlled and measured as a digitally sampled parameter. The
availability of simultaneously sampled time series of reference and test
sensor data made possible the calculation of cross spectra from which the
amplitude-squared and phase portions of the transfer fuaction were com-
puted. Time series data were acquired at a regular rate of 10,000
samples/s. Thus, the Nyquist frequency associated with the discrete
spectra obtained in this fashion is well above any frequency to which the
NBIS conductivity cell might be expected to respond.

From these experiments, power transfer functions were obtained for conduc-
tivity with much higher frequency resolution than reported herein for the
NAVOCEANO CTD data aliasing study. The absence of jitter in the sampled
data also contributed to a high level of confidence in the reported data.
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The Gregg test data were acquired at various drop rates ranging from 0.05
m/s to over 3.1 m/s and the transfer function was shown to depend signifi-
cantly upon the drop rate. One particular test conducted at a rate of
0.884 m/s was near the rate of 0.75 m/s used for the *ests described in
the NAVOCEANO study. The transfer function for this test is -plotted in
figure 29 together with the upper and lower limits of the conductivity
power transfer function for purposes of comparison.

A comparison of Gregg's results with the NAVOCEANO study data shows: Good
agreement at all frequencies; and that the transfer function estimate pro-
duced by this investigation tends to be slightly high relative to Gregg's
results.

An explanation for the difference between the NAVOCEANO data and Gregg's
results may be found in examining the power transfer function (PTF) for
frequencies beyond the Nyquist frequency for high data rate sampling

(fy = 46.88 Hz). Plots of the PTF measured by Gregg's technique show
significant, secondary side lobes centered at frequencies on the order of
40-60 Hz, depending upon sensor drop rate, and again at approximately 100
Hz. These peaks in the power transfer function, well above the high data
rate Nyquist frequency, offer the opportunity for aliasing in the conduc-
tivity step response test data. Aliasing in the step response spectrum
would then result in a bias of the estimated conductivity power transfer
function. Use of this calculated biased transfer function for determina-
tio.. of error in conductivity due to aliasing will yield a biased high
result. This biased result will be conservative in that the estimate of
error due to aliasing will represent a worst case.
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5.1

5.0 CONCLUSIONS

The products of this investigation, described in Section 3.0, include
estimates of the amplitude portion of the power transfer function for both
the temperature and conductivity sensors of the NBIS Mark IIIb CTD. By
assuming specific forms for the power spectrum of the input parameters,
estimates for spectral error and variance error due to aliasing were
derived for both conductivity and temperature and were extended, as ap-
proximations, to include the corresponding effects on calculated salinity.
The conclusions which may be drawn from these results can be divided into
two areas: Those relating to the methodology employed to obtain the results,
and those relating to the results themselves. These two areas are discussed
further in the following sections.

METHODOLOGY

The methods employed to obtain the results described in Section 3.0 include
certain new techniques as well as adaptations of existing techniques for
data analysis. For the purposes of this investigation, these techniques
represent a product as well, since they are now made readily available to
NAVOCEANO for further investigations of a similar nature and, with certain
modifications as described in Section 6.0, for use in routine determination
of CTD sensor transfer functions. A brief, summary description of each of
the techniques used is provided below.

Transfer Function Estimation

A method of estimating the transfer functions of the NBIS CTD sensors has
been developed which processes data obtained using existing NAVOCEANO
laboratory and data acquisition equipment. The method does not produce
the transfer function per se, but provides upper and lower bounds to the
transfer function by using Shaw's method to estimate 1imits for the power
spectrum of an unequally spaced sequence. The upper limit is adequate for
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bounding the spectral effect of aliasing but a bounding approach does not
produce a sufficiently accurate transfer function for use in deconvolution
corrections to measured time series, such as operational CTD data. Recom-
mendations regarding this problem are provided in Section 6.

Spectral Error Estimation

A procedure was also developed for estimating the error produced by aliasing
in a spectrum of temperature or conductivity data sampled at the standard
rate. The extent of aliasing in such sampled data is a direct function of
the sensor transfer function and the true spectrum of the sampled process.
The results presented in Section 3.0 are based on assumed input spectra,

the shapes of which are derived from assumptions regarding basic physical
characteristics of the data. Refined estimates could be obtained by using

a more accurate representation for the spectral form, for example, actual
measured data.

Variance Error Estimation

The approach used to estimate spectral error was extended to allow an estimate
of aliasing-induced error in the calculated variance of a conductivity or
temperature time series. Since these time series are presently low-pass
filtered prior to calculation of salinity to reduce "spiking", the variance
error was computed for various filter cutoff frequencies corresponding to
upper limits of each of the frequency bands obtained in a spectrum of standard
rate data. Parseval's relation was used to compute the variance and the
variance error, so that the results are applicable to the case in which an
ideal filter is used to low-pass the data.

Extensions to Salinity
On the assumption that changes in conductivity and temperature may be

treated as perturbations from some mean value and are small (less than a
few °C or mS/cm), a linearizing approximation was developed to extend the
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5.2

spectral and variance error results to salinity. The results obtained
are only approximations but are adequate to provide an estimate of the
order of magnitude of the aliasing problem as it applies to salinity.

Validity of Results

The independent work of Gregg g}_gl,,13 described in Section 4.0, has
provided a means of assessing the valfdity of the results of this study, at
least insofar as the conductivity sensor power transfer function estimate

is concerned. As indicated previously, the results of Gregg fell outside

the upper and lower bounds obtained in this investigation for some
frequencies. A possible explanation for this discrepancy, as discussed
previously, is the presence in the step response spectrum of energy which

has been aliased from frequencies higher than the high data rate Nyquist
frequency. This aliased energy biases the spectral estimate and the transfer
function, causing both to be higher than the correct value. The magnitude

of the differences between the results of this investigation and those of
Gregg is relatively small. Overall, the agreement is good, and serves to
confirm the validity of the results obtained for the conductivity sensor
power transfer function. Indirectly, this agreement confirms the correctness
of the methodology used to obtain the transfer function.

DATA AND DATA PRODUCTS

Results beyond the conductivity transfer function have not been independently
confirmed for this investigation. As pointed out previously, the validity of
the specific results obtained for spectral error and variance error are
dependent upon the correctness of the assumed input spectral forms. A
discussion of the choice of those forms was presented in Section 3.1 and

need not be repeated here. However, a discussion of the results of those
calculations must be prefaced by a reminder that the choice of the spectral
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forms used in this investigation was, in fact, an assumption made by the
investigator. Assuming that the 1/f2 + white-noise model is a valid choice
for the measured spectrum, the following specific conclusions may be drawn
regarding the effect of aliasing upon data measured by the NBIS Mark IIIb
CTD instrument.

Temperature

An extension of the temperature data product to a spatial resolution on

the order of 0.10 m would not be limited by aliasing, assuming that spectral
error less than or equal to 10% is acceptable. This may be seen by inter-
polating linearly in Table 17 to obtain an estimate of spectral error. At

the laboratory drop rate of 0.75 m/sec, resolution of 0.1 m corresponds to

a frequercy of 7.5 Hz, for which the relative spectral error is approximately
9%. This frequency is also less than one-half the Nyquist frequency for
standard data rate sampling. Lower spectral error results at lower frequencies.

An issue separate from that of aliasing is the signal-to-noise ratio in the
data product itself. When a physical parameter is sensed by a transducer,
an analog signal is typically produced, the level of which is proportional
to the value of the sensed parameter. After sensing, the analog signal is
contaminated by noise in the transducer itself and in the analog section of
the data acquisition equipment. The process of conversion from an analog
signal to a corresponding digital value introduces digitization noise. The
spectral form of digitization noise is "white", meaning that it is evenly
distributed over all portions of the frequency spectrum. Sensor and other
analog noise have spectral forms which depend upon the specific sensor and
circuitry involved. However, to a good approximation these may also be
treated as white. It should be pointed out that the noise sources described
here are internal to the system. External, or ambient, noise is not
considered.

If an ideal sensor did not exhibit a frequency-dependent attenuation, then
the signal-to-noise ratio (SNR) obtained would be

SNR(f) = S,(f)/n
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where Sl(f) is the spectral density of the input process and n is the
internal noise spectral density. Recall, however, that a real sensor
possesses a power transfer function, |T(f)|2, so that the measured spectral
density is Sz(f) given by Eq. (58). As described in Section 2.5, the
measured spectrum may be corrected for transfer function effects. However,
in so doing the signal-to-noise ratio is altered to

S,(f
SNR'(f)=in(-l - IT(6))?

Thus, in those portions of the spectrum for which the power transfer
function is less than unity, the signal-to-noise ratio is reduced cor-
respondingly. The SNR is poorest, i.e., has its lowest numerical value,
in those regions where the transfer function has “rolled off" at the
edge of the sensor passband. Extension of the resolution of any data
products into this rolloff region of the spectrum will result in exag-
geration of system noise in that frequency regime due to the transfer
function correction process described in Eq. (58). A hard and fast
rule cannot be established for determining the best cutoff frequency
for a data product. This is especially true since both the sensor transfer
function T(f) as well as the input signal level Sl(f) vary during actual
deployments.

If a cutoff frequency corresponding to the sensor transfer function
half-power frequency is used (arbitrarily) as a rule, then the signal-to-
noise power ratio will never be greater than twice the optimum value.

The CTD temperature sensor transfer function reaches a half-power level
at a frequency of approximately 2.8 Hz, corresponding to a spatial
resolution of 0.26 m for the laboratory drop rate.
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Because the temperature sensor is, to good approximation, a point sensor,
its frequency response characteristics should be nearly independent of the
sensor drop rate. This hypothesis is supported by the temperature data of
fig. 10 which show virtually no variability from one response test to the
next. Thus, the spatial frequency response of the sensor may be obtained
by determining the spatial frequency k', corresponding to a particular
temporal frequency f, via

k' = f/v

where v is the drop rate. Spatial resolution, or wavelength, is given by

A o= 1/k' = v/f

Hence, for an operational drop rate of 1.0 m/s, the sensor half-power
frequency is 0.36 m.

Thus, we conclude that the temperature data product could be extended to
approximately 0.10 m without significant error due to aliasing. However,
the signal-to-internal noise power ratio decreases below one-half the
optimal value as spatial resolution becomes finer than 0.36 m and below
one-fourth as resolution exceeds 0.18 m.

Conductivity

An extension of the conductivity data product to a spatial resolution on

the crder of 0.10 m would not be so limited. This resolution, equivalent

to a frequency of 7.5 Hz at the laboratory drop rate, corresponds roughly

to the half-power point for the conductivity sensor transfer function.

This frequency is also less than half the Nyquist frequency for standard

data rate sampling. As shown in Table 17, spectral error at a frequency

of 7.5 Hz would be on the order of 10% and would be less for lower frequencies.
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For the operational CTD downcast drop rate of 1.0 m/s, a spatial resolution
of 0.10 m corresponds to a 10 Hz frequency. This is still substantially
below the Nyquist frequency. Unlike the temperature sensor, the CTD con-
ductivity sensor transfer function varies greatly with drop rate.
Therefore, it is not possible to infer results from one drop rate to
another. However, Gregg, gﬁigl.,13 report results for several drop rates
near 1.0 m/sec, showing that the power transfer function plotted in k'
space does not change dramatically with drop rate. We may conclude that
the value of the transfer function will be somewhat changed under opera-
tional conditions, but will still allow a good signal-to-noise ratio for
the sensed signal.

Salinity

A review of Table 19 reveals that salinity is not adversely affected by
aliasing for frequencies below 7.5 Hz and spatial resolutions coarser than
0.1 m. This is to be expected since a similar conclusion was reached for
the two primary factors, conductivity and temperature. However, due to
the restriction on extension of temperature beyond 2.8 Hz based on
deterioration in the signal-to-noise ratio, a similar restriction should
apply to salinity. In summary, we conclude that while aliasing does not
prevent extension of data products to a spatial resolution on the order of
0.10 m, the rapid rolloff of the temperature sensor beyond 0.36 m does.
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6.0 RECOMMENDATIONS

Sensor Performance

This study has shown that data products obtained from NBIS Mark IIIb CTD

data are not significantly affected by aliasing at the present operational
drop rate of 1.0 m/sec, as long as the products have a spatial resolution

no finer than 1.0 m. In planning for extension of data products to finer
resolution, the first barrier to be surmounted is that of the limited
frequency response of the presently-used thermistor/platinum wire tempera-
ture sensor. It is recommended that an effort be undertaken to improve

the high-frequency performance of this sensor, making its response comparable
to that of the fast 3 c¢m conductivity cell.

If this improvement is realized, then an enhancement of data resolution to
something on the order of 0.1 - 0.2 m should be possible without serious dis-
tortion due to aliasing. Improvement in resolution beyond 0.1 - 0.2 m will
require an increase in the data sampling rite of the CTD so that the Nyquist
frequency will be substantially higher than the frequencies of interest.

Data Correction

As improved resolution forces an expansion of the data frequency band, low-
pass filtering of conductivity and temperature will no longer be a practicable
means of eliminating salinity spikes. The most accurate alternative will

be deconvolution correction of the individual sensor time series using the
respective transfer functio.s. This will raise several problem areas which
must be dealt with.

As indicated previously, deconvolution requires that both the amplitude and
phase portions of the sensor transfer function be known. In addition, Gregg
et al. 13 have pointed out that the relative phase of temperature and con-
ductivity must also be known in order to produce a correct salinity.
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Since the present drop rate procedure is not capable of directly
determining the information, a significant modification of the testing
procedure will be necessary. The changes required are:

1) Provide for variation, control, and measurement of the sensor drop
rate,

2) Provide for data sampling at a fixed sampling frequency (without
jitter) and at a sampling rate much greater than 100 Hz,

3) Provide for measurement of the salinity interface during the drop
test with a reference probe.

A second problem is that of contamination of the data by noise which is
amplified during the deconvolution process, as described in Section 5.2.
Matsuyama21 has discussed this problem in considrable depth. While
Matsuyama presents a variation in the conventional deconvolution procedure
to reduce contamination, a complete solution is not obvious and further
investigation will be required.

A third problem which Gregg et al. 13 have also identified is that of
data correction due to variation in the sensor drop rate. The variation
in drop rate is primarily due to ship motion, particularly heave and roll.
As has been discussed previously, the conductivity sensor transfer
function changes with changes in the drop rate. This requires that con-
ductivity be corrected via some form of dynamic deconvolution procedure in
which both the data and the transfer function change with time. Such a
correction procedure may be possible, but the existence of one is not
known to the investigator. An alternative proposed by Gregg et al.
would be mechanical compensation of the CTD drop rate via a controlled
winch or other means so that vertical motion is nearly constant.
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APPENDIX A

PLOTS OF HIGH DATA RATE TIME SERIES
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A-9.

A-10.

A-11.

A-12.

A-13.

A-14,

A-15.

A-16.

A-17.

A-18.

A-19.

A-20.

A-21.

A-22.

Time Series of Conductivity Acquired During
Response Test COlA

Time Series of Conductivity Acquired During
Response Test CO2A

Time Series of Conductivity Acquired During
Response Test CO3A

Time Series of Conductivity Acquired During
Response Test CO4A

Time Series of Conductivity Acquired During
Response Test CO5A

Time Series of Temperature Acquired During
Response Test TOlA

Time Series of Temperature Acquired During
Response Test TO2A

Time Series of Temperature Acquired During
Response Test TO3A

Time Series of Temperature Acquired During
Response Test TO4A

Time Series of Temperature Acquired During
Response Test TO5A

Time Series of Conductivity Acquired During
Response Test CO1B

Time Series of Conductivity Acquired During
Response Test C02B

Time Series of Conductivity Acquired During
Response Test CO3B

Time Series of Conductivity Acquired During
Response Test C04B

Time Series of Conductivity Acquired During
Response Test CO58

Time Series of Conductivity Acquired During
Response Test CO6B

Time Series of Conductivity Acquired During
Response Test CO7B

Time Series of Conductivity Acquired During~

Response Test CO8B

Time Series of Conductivity Acquired During
Response Test CO09B

Time Series of Conductivity Acquired During
Response Test C10B

Time Series of Conductivity Acquired During
Response Test C11B

Time Saeries of Conductivity Acquired During
Response Test C12B
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APPENDIX A
PLOTS OF HIGH-DATA-RATE TIME SERIES

Time series of each of the response test data sets are plotted in the
following figures. Two sets of such data were acquired for analysis in
this investigation. The initial set (data set A) consisted of five
temperature response tests, TOlA - TO5A, and five conductivity response
tests, CO1A - CO5A. A second set (data set B) consisted of twelve conduc-
tivity response tests, CO1B - C12B. All data were acquired using the same
CTD and sensors.

Data were acquired at a nominal sampling rate of 93.75 Hz. Due to the
data acquisition procedure, sampling occurred with some jitter. The data
of this appendix are plotted as though samples were acquired at intervals
of 10 msec, 10 msec, and 12 msec, respectively.

Figures A-1 through A-5 and A-11 through A-22 are plots of conductivity
vs. time with conductivity in mS/cm,
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APPENDIX B
COMPUTATION OF PARTIAL DERIVATIVES OF SALINITY*

The Practical Salinity Scale adopted by the Joint Panel on Oceanographic Tahles
and Standards provides a means of relating temperature, T, conductivity, C,

pressure, P, and salinity, S, of seawater. An algorithm for computing salinity
from the other parameters is presented by Gieskes.11 The following development
results in an algorithm for computing the first partial derivatives of salinity
with respect to temperature and conductivity at constant pressure for use in eq.

(68) et seq. The notation of Geiskes is followed.

The salinity function S(P,T,C,) may be written

S=Sp + AS (B1}
where
3
So =§ aj R1/2 (82}
i=o0
and AS = T -15 5 b R1/2 (B3}
T+ K(T-15) i=0
= ©(7T) 5 biri/2 = ™(Top
1:0

The parameter R is given by

= R (B4)
Rp I¢

*Note that S is used to represent salinity in this appendix while 8 is used in
the main body of this report.
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with

R = R(C) = _C_ ’ CO = 42.914 ll'lS/Clﬂ

Co

and

R. =R (T,P,C) =1+ Cc(P

P P 4 N16D) '+'LA%T_]R(C5
re = (1) = 2 c; T
i=o

The differential of S is

dS= 35 .dP+ 35S .dT+ 35 .dC
P aT aC

However neglecting the effect of pressure, we have dP = 0 so that

dS= 35 .dT+ 35 .
a7 ac

We will evaluate these terms independently.
The temperature term is
3S = S+ _3_(aS)

a7 aT aT
Again, evaluating separately, we have
5
as°=_§_{§ aini/z}
aT a7  i=0
5
=2 (8" ) sy B2 }
aT i=1
i=1 oT
=§ 8y RunJ).VQMig} = =« 3R
i=1 aT aT
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(88)

(89)

(810)




where

a; - iz . R(i/z'l)

=1

5
2 -[a_ <] ) by RY?
aT i=0
b

+ t(T) _@__[E biRi/z]
a1 | i=0

[:1 1 _ T -15
+ k(1-15) [ + k(7-15)]

i=0

5
(M) 2 by, i R(i/z'l) R
. [ i3)

1 g. + t(T) B _3R
{ T1 + k(T-15))2 yob aT

« 3R + BT(T) 3R_ + ob

5
[- 4 - E
i
Then
aT
Thus
3S =
oT

Next we evaluate

S =
aC

Now

5
]E biRi/z
2

i=0

a7

T aT [1 + k(1-15)]2

(« + B1(T)) 3R+ ob
aT Th + k(1-15)]2

as
aC

s, + _3_ (8S)
aC oC

R

141

(B11)

(812)

(B13)

(Bl4)

(B15)




as shown before for a3Sg . Likewise

aT
a_(8s) = 3 [xm).opl= (1) a0p (B16)
aC aC *
= (T) B3R
aC
Thus
35 = (= + Br(T)) 2R (B17)
aC aC

It now remains to evaluate the partial derivatives of R with respect to C and T.

3R = 3 R
aC aC RpTt , (B818)
= 1 . _OR__ = er -| Tt Rp + Rp arg
Rpft ~ aC Ry Tac Tt ac
= R 1 R 1 &R 1 ar
{7 -z Xp t)
RpTt R ac Rp ~aC Tt aC
and so
3R = 1 &R 1 R 1 ar
ot Rl - = p — = =t
aC R 3c Rp ~a¢ Tt ac (B19)

But since ry is not a function of conductivity, C.

9Tt =0
ac
(820)
and
3R = 1 @R 1 @R
Riz-= - &
ac R ac Rp ~aC ’
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Similarly, we have

3R = 1 R 1 R 1 or
22 2 R{zE -2 Fp 2 My
aC R a7 R r
P a7 v (821)
=-R,1 R, + 1 art
e A
since R = R(C).
Further evaluating, we have
SR = 3 [ c ] = 1
aC aC Co Co
Rp = _ c(P) . A(T) .1 (822)
—aEp' B(T) + A(T) . R(C)]? Co
= -C(P)A(T)
Co LB(T) + A(T) R(C)?
= -A(T) . (Rp-1)
Co LB(T) + A(T)R(C)]
= -A(T) . (Rp - 1)?
Co C(P)
Thus
3R = o - 1L _ 1 . _-AC (R, - 1)2
o e % TR ey P g
= 1+ A() . (Ry-1)2
R{Z eo(P) —E-—Rp } (823)
= R 1 _ i.A!TZ
EO{E Rp }
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with

c(p)

[B(T) + A(T)R(C)]Z

Finally, evaluating 3R swe have
aT

Rn = -C(P)
“aTE [B(T) + A(T)R(C)]2

and, since

ACT) = d3 + d,T

[ 3B(T) + R(C) aAgTJ]
aT aT

- [ay + 24,7 + R(C)G]

B(T) =1+ le + dsz,
we have
aA = da
aT
and
8 = dj +2d,7
aT
Therefore
Ry = -C(P)
—P
3T B(T) + A(TIR(C)]?
= §r,1,0) [a) + 20,7 + R(C)g, ]
and 4
ey = 3 { E CiTi }
aT oT i-o

| 3 i-1
= i. Ci . T
i=1

= D(T)
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Thus

R = _pel . 8. [0+ 207 +Rec), ]
aT Rp

+ 1 p(T)} ) (829)
Tt

—R{% [d; + 2d,7 + R(C)d, ] + £
p t

Algorithm
In summary, we must compute the following, with constants as given by Gieskes!!:

c(P) = Ple, +epP + e3P2),

2

B(T) =1+ 4T+ d2T2 ,
A(T) = d3 + daT,
R(C) = C / Cg,
&(PyT,C) = ‘C(P) ’
[B(T) + a(T)R(C)]2
Rp = 1 + c(P) ’
B(M + A(TDRC)]

I't = 3 CiT1 ’

i=o
b = 3 1 ¢ -l

i=1
B = - R§02 []

Rp It
R = -p 8 [o+207+RrCI ]+ £y

3T Rp Tt
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with P in decibars, T in degrees Celsius, and C in Siemens/cm. We then may com-

pute

and

3R = 1 1) ,
£ &t - KD
5
«® = a i (-j-' 1)
§=1 1R, ’
B = i by iygp=-1) ,
i=1 1
T = T - 15 ’
1 + k(T - 15)
5
Ob = Z bi Ri/z )
1=0

_aéz (¢+B‘[),£B
oC aC
is_: (¢+BT),L+ oh R
oT aT

1 + k(1-15)]2

Data arrays required to store the constants from Geiskes are

aj, i=0,1, ... , 5
bj, 1 =0, 1, ... , 5
ci,1=0,1, ... , &
di, 1 =1, «uup &

81, 1 = 1, ssey 3

k = 0.0162

42.914

o
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APPENDIX C
ESTIMATION OF VARIANCE IN SALINITY*

Consider simultaneously sampled sequences of temperature and conductivity, {Tj}
and {CJ}’ J=1, ..., N, taken at constant pressure, from which a salinity

sequence {SJ} is constructed. The varisnce of each sequence is

N
(?‘Tj)z=l E
N J

o = é. 51 . ATJ’, (c1)

OCz = %. §=1 ACJz, (c2)
and

N

o5 = ‘é §=1 ASJ2 (c3)
where

4Ty = (T-TJ) (Ca)
T is the mean of the temperature sequence

T = rﬁ' 2:1 Ty (cs5)

and ACj and ASJ are similarly defined. To a first approximation

ASJ=35

3

ATJ+%C_S_ . ACJ (cé)

non
o4
now
o4

-~

*Note that S is used to represent salinity in this appendix while 8 is used in
the main body of the report.
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Squaring, we have
Asjz T (57 (T,T) a7 J)z + 25, (C,T) sc(E,T) aTy aCy (c7)
+ (S(CTacy)?,

with
$;(T,0) = 3s - (c8)
9
-T
C=¢C
and
5c(To0) = 3 (c9)
T = _T_
C=¢C
Then
Osz = %g ASJz
T S A(T,0) r}_EATJz-JI
N
LN (c10)

N

+ 5 (T,0) [%g chz]

°s' T sT'(‘I’,L‘) oT* + 2sc(T,E)sT(T,E) [ % g ATJ ch]

+ 25¢(T,C)s (T, D) l} g aT, ACJ]

+ Sc’('r,f) <:lcz .
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IEATAC = /

(c11)

— [/ ATAC p(AT | AC) d(AT) d(AC)
all AT,AC

for large N, where p(AT|AC) is the joint probability density for AT and AC.

If we assume that the ATJ and AL‘j are
1) Uncorrelated and

2) Symmetrically distributed

Then
If ATAC p(AT | AC) d(AT) d(4C) = O. (c12)
all AT,AC

Thus
N J

So that
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APPENDIX D

POWER SPECTRUM OF SALINITY

Consider a time series of salinity, 8(t) , which consists of perturbations,
A 8(t) from some average value, 8y . The perturbations are due entirely to per-

turbations in temperature, AT(t), and conductivity, AC(t) . Thus

a(t) B, + 88(t) (D1)

80 + {BT AT(t) + ec ac(t)} , (D2)

where BT and 8, are the first partial derivatives of salinity with respect to
temperature and conductivity, respectively, given by egs. (79) and (80). The
perturbation times series, A 8(t) , is a continuous, zero-mean function whose

Fourier transform and power spectrum are well-behaved.
The Fourier transform of the salinity time series is
F{e} = Fis,} + Fise}, (03)

where F{x} represents the Fourier transform operating on the time series X. The
fourier transform of the constant first term in the RHS of eq. (D3) is a Dirac

uelta function at zero frequency

F{eg} = &(f/8,) . (D4)
| ed
Recalling from eq. (39) that the single-sided power spectrum of a function is
given by twice the product of its Fourier transform with the conjugate, the

power spectrum of'the salinity time series, may be written as

PSD{B} = PSD{B } + 26(f/8y) [ F'{ae} + F{ae}]
el (05)

+ PSD{a8}:
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For frequencies greater than zero, the first two terms in the RHS of eq. (D5)
vanish, so that

PSD{8} — PSD{A8} = F"{A8} F{se). (Dé)
By virtue of the addition theorem for the Fourier transform, the Fourier trans-
form of the salinity function is ~

F{a8} = 6y F{aT} + 8_F{ac}. (07)
Then

PSD{B} = 26,2 F {aT} F(aT} + 2 8. F*{AC} F{AC}

+26. 8, [F@ry Fiacy + foac) Faml. (08)

The Fourier transform may be written in polar form, as may any complex function,

-1
10

F{x} = ax ’ (D9)

Where a  is the (real) modulus of F and ¢, is the (real) phase angle. Using
this notation, the third term in the RHS of eq. (D8), may be expanded to yield

i -1 i -

F* aT) F{aC} = ap e tac 8,7 © Yar = 8p8,r e+ (9ac - dar) (D10)

and
-1 -

FH{IC) FIAT} = sy 8, e (e - 4ar) (011)
so that

FHATHFLACH + FTUAC) FIOTY = 2ae, coslh, - 4] (012)
Then, substituting into eq. (D8) the salinity spectrum becomes

PSo{e} = BT‘ PSD{AT} + BC’ PSD{AC}

+ 2 8, /POWTT POIET coslyy, - ¢,.].. (013)
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Finally, by an argument similar to that employed to obtain eq. (D6), it may be

shown that for non-zero frequencies
PSD{T} —— PSD{AT} (D14)
and

PSD{C} —— PSD{AC} (D15)

Then for frequencies greater than zero, the salinity spectrum is

PSD{8} = eTz PSD{T} + 8.2 PSD{C}

c

+ 28, 8, /POUTPOCT cosl,, - ¢,]. (D16)

The third term in the RHS of eq. (D16) may be thought of as a cross term which
adds to the salinity spectrum or subtracts from it at any given frequency,
depending upon the relative phases of the temperature and conductivity at that
frequency. Equation (D16) is useful for determining order of magnitude esti-
mates for the salinity spectrum. Generally, one might expect the spectra of
temperature and conductivity to be comparable in magnitude. Likewise, in
Section 3.3 it is shown for temperature and conductivity ranges of interest that
6, and 8, are comparable in magnitude. Thus, the term 28, 6, vPSD{TY PSOICY
is comparable in magnitude to the sum of the first two terms in the RHS of eq.
(D16). Since the cosine term will vary from +1 to -1 as the phase difference

varies from -n to +x, it may be seen that PSD{8} varies from a maximum value

PSOpax (8} = 2[6.2 PSD{T} + @.? Pso(c}] (017)

C

to approximately zero. A median value for use as an order of magnitude estimate
is
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PSD{8} :eT’ PSO{T} + ecz PSD{C}. (D18)

converting to the notation used in the body of the report for discrete power

spectrum, eq. (D18) becomes the order of magnitude estimate of eq. (82),

S, Gaf) = ot CN 4 (ef) + B2 EDE ().  (ois)
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